Compare / validate results#
Functions to compare and validate results.
References#
- class h2ss.compare.HiddenPrints[source]#
Suppress print statements: https://stackoverflow.com/a/45669280
- h2ss.compare.electricity_demand_ie(data)[source]#
Compare the capacity to Ireland’s electricity demand in 2050.
Parameters#
- datapandas.Series
Pandas series or dataframe column of capacities
Notes#
Figures from [1]. Assume that the conversion of hydrogen to electricity is 50% efficient; When fuel with 100% H2 is used, higher heating value and lower heating value efficiency are 48.7% and 57.5%, respectively [2]. This does not account for transmission losses. Assume that the hydrogen demand is 17% of the electricity demand, based on the Royal Society report on energy storage [3].
- h2ss.compare.hydrogen_demand_ie(data)[source]#
Compare the capacity to Ireland’s hydrogen demand in 2050.
Parameters#
- datapandas.Series
Pandas series or dataframe column of capacities
Notes#
Data from the National Hydrogen Strategy [4].
- h2ss.compare.distance_from_pipeline(cavern_df, pipeline_data_path)[source]#
Calculate the distance of the caverns from the nearest pipeline.
Parameters#
- cavern_dfgeopandas.GeoDataFrame
Dataframe of potential caverns
- pipeline_data_pathstr
Path to the offshore pipeline Shapefile data
- h2ss.compare.calculate_number_of_caverns(cavern_df, weibull_wf_data)[source]#
Calculate the number of caverns required by each wind farm.
Parameters#
- cavern_dfgeopandas.GeoDataFrame
Dataframe of potential caverns
- weibull_wf_datapandas.DataFrame
Dataframe of the Weibull distribution parameters for the wind farms
- h2ss.compare.load_all_data(keep_orig=False)[source]#
Load all input datasets.
Parameters#
- keep_origbool
Whether to keep the original constraints datasets after buffering
Returns#
- tuple[xarray.Dataset, geopandas.GeoDataFrame, dict[str, geopandas.GeoDataFrame]]
The halite data, extent, and exclusions
- h2ss.compare.capacity_function(ds, extent, exclusions, cavern_diameter, cavern_height)[source]#
Calculate the energy storage capacity for different cases.
Parameters#
- dsxarray.Dataset
Xarray dataset of the halite data
- extentgeopandas.GeoSeries
Extent of the data
- exclusionsdict[str, geopandas.GeoDataFrame]
Dictionary of exclusions data
- cavern_diameterfloat
Diameter of the cavern [m]
- cavern_heightfloat
Height of the cavern [m]
Returns#
- tuple[geopandas.GeoDataFrame, geopandas.GeoDataFrame]
Dataframes of the caverns and zones of interest
Notes#
Uses the defaults apart from the changing cavern diameters and heights.
- h2ss.compare.optimisation_function(ds, extent, exclusions, cavern_diameter, cavern_height)[source]#
Run all capacity and optimisation functions.
Parameters#
- dsxarray.Dataset
Xarray dataset of the halite data
- extentgeopandas.GeoSeries
Extent of the data
- exclusionsdict[str, geopandas.GeoDataFrame]
Dictionary of exclusions data
- cavern_diameterfloat
Diameter of the cavern [m]
- cavern_heightfloat
Height of the cavern [m]
Returns#
- tuple[geopandas.GeoDataFrame, geopandas.GeoDataFrame, geopandas.GeoDataFrame, geopandas.GeoSeries]
Dataframes of the caverns, zones, Weibull parameters, and injection point
Notes#
Uses the defaults apart from the changing cavern diameters and heights.