Compare / validate results#

Functions to compare and validate results.

References#

class h2ss.compare.HiddenPrints[source]#

Suppress print statements: https://stackoverflow.com/a/45669280

h2ss.compare.electricity_demand_ie(data)[source]#

Compare the capacity to Ireland’s electricity demand in 2050.

Parameters#

datapandas.Series

Pandas series or dataframe column of capacities

Notes#

Figures from [1]. Assume that the conversion of hydrogen to electricity is 50% efficient; When fuel with 100% H2 is used, higher heating value and lower heating value efficiency are 48.7% and 57.5%, respectively [2]. This does not account for transmission losses. Assume that the hydrogen demand is 17% of the electricity demand, based on the Royal Society report on energy storage [3].

h2ss.compare.hydrogen_demand_ie(data)[source]#

Compare the capacity to Ireland’s hydrogen demand in 2050.

Parameters#

datapandas.Series

Pandas series or dataframe column of capacities

Notes#

Data from the National Hydrogen Strategy [4].

h2ss.compare.distance_from_pipeline(cavern_df, pipeline_data_path)[source]#

Calculate the distance of the caverns from the nearest pipeline.

Parameters#

cavern_dfgeopandas.GeoDataFrame

Dataframe of potential caverns

pipeline_data_pathstr

Path to the offshore pipeline Shapefile data

h2ss.compare.calculate_number_of_caverns(cavern_df, weibull_wf_data)[source]#

Calculate the number of caverns required by each wind farm.

Parameters#

cavern_dfgeopandas.GeoDataFrame

Dataframe of potential caverns

weibull_wf_datapandas.DataFrame

Dataframe of the Weibull distribution parameters for the wind farms

h2ss.compare.load_all_data(keep_orig=False)[source]#

Load all input datasets.

Parameters#

keep_origbool

Whether to keep the original constraints datasets after buffering

Returns#

tuple[xarray.Dataset, geopandas.GeoDataFrame, dict[str, geopandas.GeoDataFrame]]

The halite data, extent, and exclusions

h2ss.compare.capacity_function(ds, extent, exclusions, cavern_diameter, cavern_height)[source]#

Calculate the energy storage capacity for different cases.

Parameters#

dsxarray.Dataset

Xarray dataset of the halite data

extentgeopandas.GeoSeries

Extent of the data

exclusionsdict[str, geopandas.GeoDataFrame]

Dictionary of exclusions data

cavern_diameterfloat

Diameter of the cavern [m]

cavern_heightfloat

Height of the cavern [m]

Returns#

tuple[geopandas.GeoDataFrame, geopandas.GeoDataFrame]

Dataframes of the caverns and zones of interest

Notes#

Uses the defaults apart from the changing cavern diameters and heights.

h2ss.compare.optimisation_function(ds, extent, exclusions, cavern_diameter, cavern_height)[source]#

Run all capacity and optimisation functions.

Parameters#

dsxarray.Dataset

Xarray dataset of the halite data

extentgeopandas.GeoSeries

Extent of the data

exclusionsdict[str, geopandas.GeoDataFrame]

Dictionary of exclusions data

cavern_diameterfloat

Diameter of the cavern [m]

cavern_heightfloat

Height of the cavern [m]

Returns#

tuple[geopandas.GeoDataFrame, geopandas.GeoDataFrame, geopandas.GeoDataFrame, geopandas.GeoSeries]

Dataframes of the caverns, zones, Weibull parameters, and injection point

Notes#

Uses the defaults apart from the changing cavern diameters and heights.